skip to main content


Search for: All records

Creators/Authors contains: "Molnar, Alyosha C."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Microscopic robots controlled by onboard integrated circuits that walk when powered by light are realized. 
    more » « less
  2. Abstract

    A general transfer method is presented for the heterogeneous integration of different photonic and electronic materials systems and devices into a single substrate. Called BLAST, for Bond, Lift, Align, and Slide Transfer, the process works at wafer scale and offers precision alignment, high yield, varying topographies, and suitability for subsequent lithographic processing. BLAST's capabilities is demonstrated by integrating both GaAs and GaN µLEDs with silicon photovoltaics to fabricate optical wireless integrated circuits that up‐convert photons from the red to the blue. The study also shows that BLAST can be applied to a variety of other devices and substrates, including CMOS electronics, vertical cavity surface emitting lasers (VCSELs), and 2D materials. BLAST further enables the modularization of optoelectronic microsystems, where optical devices fabricated on one material substrate can be lithographically integrated with electronic devices on a different substrate in a scalable process.

     
    more » « less
  3. Abstract In digital agriculture, large-scale data acquisition and analysis can improve farm management by allowing growers to constantly monitor the state of a field. Deploying large autonomous robot teams to navigate and monitor cluttered environments, however, is difficult and costly. Here, we present methods that would allow us to leverage managed colonies of honey bees equipped with miniature flight recorders to monitor orchard pollination activity. Tracking honey bee flights can inform estimates of crop pollination, allowing growers to improve yield and resource allocation. Honey bees are adept at maneuvering complex environments and collectively pool information about nectar and pollen sources through thousands of daily flights. Additionally, colonies are present in orchards before and during bloom for many crops, as growers often rent hives to ensure successful pollination. We characterize existing Angle-Sensitive Pixels (ASPs) for use in flight recorders and calculate memory and resolution trade-offs. We further integrate ASP data into a colony foraging simulator and show how large numbers of flights refine system accuracy, using methods from robotic mapping literature. Our results indicate promising potential for such agricultural monitoring, where we leverage the superiority of social insects to sense the physical world, while providing data acquisition on par with explicitly engineered systems. 
    more » « less
  4. A highly-integrated dual technology (28nm and 130nm SOI) widely tunable software-defined RF duplexing front-end for FDD, FD, and TDD applications is presented. Predistortion and harmonic upconversion are used to cancel second and third harmonics generated by PA nonlinearity by up to 30 dB. A novel form of non-reciprocal, distributed degeneration is used to suppress TX noise that desensitizes the RX for full duplex operation. The distributed degeneration network improves RX noise figure by 7dB over baseline TX operation for same channel TX-RX. The transceiver achieves a 23dBm output power while maintaining more than 30dB of TX-RX isolation over the 0.8-1.2GHz band. 
    more » « less
  5. We present a platform for parallel production of standalone, untethered electronic sensors that are truly microscopic, i.e., smaller than the resolution of the naked eye. This platform heterogeneously integrates silicon electronics and inorganic microlight emitting diodes (LEDs) into a 100-μm-scale package that is powered by and communicates with light. The devices are fabricated, packaged, and released in parallel using photolithographic techniques, resulting in ∼10,000 individual sensors per square inch. To illustrate their use, we show proof-of-concept measurements recording voltage, temperature, pressure, and conductivity in a variety of environments.

     
    more » « less